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Abstract—Navigational tasks require the efficient computation 

of trigonometric functions. For the development of an electronic 
compass the arc tangent is to be computed for example. The 
electronic compass is model based design.  Hardware solutions 
are of special interest. The CORDIC algorithm stands in the 
focus for the computation of trigonometric functions. It is based 
on shift and add operations and permits an efficient 
implementation in FPGA`s. The paper describes the model based 
design concept of the compass design. It is explained how the 
CORDIC algorithm works. Thereby first software solutions are 
compared: Approximation using the Taylor series versus the 
CORDIC Java implementation. Different hardware solutions of 
the CORDIC algorithm are analyzed. A Pipeline CORDIC 
processor is introduced and embedded into the electronic 
compass.  The developed system is validated using an example. 
 

Index Terms—Model based design, compass, CORDIC, FPGA. 
 

I. INTRODUCTION 
HE goal of the design task is to develop an optimal 
overall system under the boundary conditions of limited 

resources. At the same time the costs are to be minimized and 
the time to market is to be reduced. The question is: How can, 
for example, different architectures be analyzed and 
optimized, in order to reach this goal. First an executable 
system model has to be provided, before performance 
assessments can be accomplished. The modelling of the 
overall system begins on abstract level. A structured approach 
is essential together with the stepwise refinement of the 
model. The complex design problem must be divided thereby 
in a regulatory way into manageable subproblems, so that 
their complexity permits a treatment. It is important to note 
that the validity of the solution of a subproblem is given 
always only in the context of the solution of the entire design 
problem. This means, the solution of a subproblem does not 
contribute automatically to the solution of the overall problem. 
The solution of a subproblem is evaluated always on their 
contribution for the solution of the superordinate design 
problem. With this kind of modelling of the system with its 
subsystems and components over all abstraction levels, 
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internal system details on higher modelling levels are hidden. 
They emerge only in the leaves of the hierarchical model tree. 
The execution of the model, the simulation, now permits the 
analysis of the system for limited, available resources and 
system requirements. 

For the design of complex, heterogeneous, integrated, 
networked systems different computation models in the 
architecture have to be integrated. A computation model is a 
mathematical formalism which defines a set of permissible 
operations for one computation and of implementation details 
abstracts. Thus, concurrencies, data flows, reactive and 
continuous systems, synchronisation and  communication 
aspects can be described adequately. Each subsystem or each 
component of the whole to be modelled system should able to 
use every computation model. 

Of special importance is the integration of the top down and 
the bottom up design for the modelling of systems. The top 
down methodology permits the modelling in an abstract way. 
The draft can be made clear and manageable. The given 
design space by the stepwise refined component 
decomposition is done until the desired degree of detail of the 
system is reached. With the bottom up methodology, 
subsystems and components are modelled and combined into 
an overall system. So experiences from past system 
developments can be brought into the design. Hence it follows 
that both techniques for practice must be combined. This 
combination of top down and bottom up is well known as the 
meet in the middle strategy [2]. Anyway, the main strategy 
should be the top down approach. In this case as much as 
possible alternatives can be examined and optimal decisions 
be made. Performance parameters can be refined stepwise or 
can be represented  as an annotation in the system modell 
through the bottom up methodology. These parameters are 
helpfull to accomplish performance assessments of the system.  

 

II. MODEL BASED DESIGN 
At present time complex, embedded, networked systems are 

developed purely requirement oriented (requirement based). 
System requirements are gathered to provide paper 
specifications from different sources. On this basis many 
distributed developer teams develop a detailed design for the 
subsystems and components. After reaching an accepted 
design the validation and the test of the overall system is to be 
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done. Therefore errors during the design process will be 
discovered often very late. The design based on executable 
models (model based design) has the potential to increase the 
productivity of the system design process substantially. This 
design strategy is model driven and begins already in the early 
design phases with the development of an executable 
specification. This executable specification is directly linked 
with the system requirements. In the center of the overall 
model based design process stands the to be modeled complex 
system, the executable model. It is refined sequentially, 
stepwise. By the linkage of the executable model with the 
system requirements inconsistencies in the system 
requirements can be found very timely found by simulation. 
During the overall design process it can be examined whether 
the requirements correspond to the design and which effects 
will be caused by the suggested change in the system 
requirements [4]. The model based design has the following 
conspicuous characteristics in relation to the requirement 
based design, (in extracts): 

• The investigation of the dynamic behavior of the 
system becomes already possible in the early phases of 
the design process. 

• Based on  simulatable alternatives and associated trade 
off analyses design decisions can be made. 

• Only one  model is used on different design levels. 
• Nonfunctional requirements can also be modelled and 

validated. 
 

III. MLDESIGNER 
MLDesigner [10] is a tool for the design of complex 

systems on mission and system level. This approach integrates 
architecture, function and application scenarios in only one 
development environment on a very abstract level. 
MLDesigner is a multi domain simulator and supports the 
modelling in discrete event (DE), synchronous data flow 
(SDF), continuous time (CT), finite state machine (FSM) and 
other computation models. Different computation models can 
be combined in order to model a system [12]. Furthermore a 
system model can be represented with its components in an 
arbitrary depth of detail. On this basis system performance 
evaluations can be accomplished. A comparison and an 
evaluation of different tools for the design on system level 
was made in [11].  

 

IV. THE ELECTRONIC COMPASS MODEL 
An electronic compass is able to continuously indicate [6] 

the azimuth angle. Two magnetic field sensors, KMZ51 by 
Philips, generate voltages Vx and Vy from which the azimuth 
can be determined then. 

arctan arctaney y

ex x

H V
H V

α = =  (1) 

Hex and Hey are vectors in the earth field, see Fig. 1. 

This picture shows three dimensional the earth field 
vectors. The x − y plane lies parallel to the earth surface. The 
azimuth has to be computed. The angle δ, the inclination, is 
the tilting angle of the magnetic field lines. This angle is 
different for different positions on the earth (at the north pole 
differently than in Ilmenau or at the equator). The declination, 
λ, between magnetic and the true geographic north amounts to 
approximately 11,5 degrees. 

An executable model for an electronic compass was 
developed with the help of the system design tool 
MLDesigner. The to be modeled system is a data flow 
oriented system [1]. One source (magnetic field sensor) 
produces continuously tokens (x − y voltage data) which are 
consumed by the following nodes (amplifier, converter, 
processor, display). Basis for the modeling is the SDF 
computation model. The goal is the development of an 
optimal overall system. Fig. 2 shows the overall system of an 
electronic compass. The model can be formally verified. For 
example for SDF graphs the following applies: 

Definition 1 (Deadlock): Is a computed Schedule not more 
continuable, since no more node can fire, then a deadlock is 
present. Cycle free graphs are deadlock free. 

The top level compass model is therefore deadlock free in 
the sense of a SDF graph. 

The module sensor supplies corrected (offset, sensitivity, 
orthogonality, temperature compensation) sensor outputs 
(voltage data). An operational amplifier circuit, modeled in 
the module amplify, is amplifying the weak sensor output 
signal. These voltage data are analogue digital converted in 
the module A/D Conv. Here for example different parameters 
for converters are adjustable. The computation of the arc 
tangent is modeled as a main function in the module CORDIC 
processor. Pure software solutions are examined based on the 
Taylor series and the CORDIC implementation. Further the 

Fig. 1.  Earth field vectors. 
  

Fig. 2.  Top-Level MLDesigner Compass Model. 
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focus is directed on a FPGA (field programming gate array) 
implementation. The module display is a data sink. Only 
tokens are consumed. The azimuth angle α is written as output 
data. 

A. The CORDIC Algorithm 
The CORDIC algorithm was introduced 1959 for the first 

time by Jack Volder [5]. CORDIC is the abbreviation for 
coordinate rotating digital computer. Starting point for the 
development of the CORDIC was the desire to handover the 
continuous computation of navigation algorithms to digital 
systems. The world of the digital signal processing is 
dominated by microprocessors. On one side they are low 
priced and extremely flexible, on the other side they are often 
not really fast enough for heavy DSP (digital signal 
processing) tasks. Available reconfigurable hardware makes it 
possible to achieve a higher speed in computation compared 
to the traditional software approach. Unfortunately for 
microprocessor based systems, optimized algorithms are not 
well implementable in hardware. Nevertheless, there exists a 
multiplicity of hardware efficient solutions. Among them 
there is also a class of iterative solutions for trigonometric 
functions. John Walther [7] extended the CORDIC theory. 
Thus using the CORDIC computation of hyperbolic, 
exponential and logarithmic functions are also possible. Kota 
[8] has accomplished error and load analyses. 

All computations of trigonometric functions are based on 
vector rotations. The vector E0 is rotated around the angle θ, 
see Fig. 3. The vector En results. 

0 0cos ix rθ=                    0 0sin iy rθ=  

( )1 0cosi ix rθ θ+ = +        ( )1 0sini iy rθ θ+ = +  
The general rotation transformation in matrix form results 

to 
0
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or in a different way of writing: 
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The rotation around the angle θ is realized by a sequence of 
rotations around the angular αi. 

1
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The angle θ is approximated by an alternating approach. A 

too far rotation is compensated by a change of sign. To control 
the direction of the rotation an auxiliary variable zi is 
introduced. 
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In order to simplify the rotation equation [9], the rotations 
are replaced by pseudo rotations, see Fig. 4. Thus the length 
of the rotating vector changes by a well known angle with a 
constant factor. 

2
1 1 tani i ir r α+ = ⋅ +  (4) 

Let tan 2 , 0... 1i
i i nα −= = − . 

Thus the following new, simplified rotation equations 
result: 
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( )1 arctan 2 i
i i iz z d −
+ = − ⋅  (6) 

For the computation of the different functions the CORDIC 
can operate in two modes. These are the rotation and the 
vector mode. For the computation of the arc tangent the vector 
mode is used. The given vector is always rotated so that the 
absolute value of its y component is reduced. The rotation 
angle is signed accumulated thereby. After processing all 
iteration steps, the following equations results: 
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Choose z0 = 0, so zn is equal to the desired azimuth. 

B. Algorithm Analysis 
In the module CORDIC processor, see Fig. 2, the arc 

tangent is modeled. First an approximation, using the Taylor 
series, is compared with the CORDIC algorithm. Both 
algorithms were implemented directly in the MLDesigner 
model using the programming language C. 

1) Approximation using the Taylor series 
Taylor series expansions sometimes show a slow 
convergence and a numeric instability and require 
many multiplications additionally. The description 
complexity is nevertheless low, see the following Java 
code. 

 
Fig. 3.  Vector transformation. 
  

 
Fig. 4.  Pseudo rotation. 
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public static double taylor_atan2(double y, 

double x, double math, int n){ 
double z=y/x; 
double result=0; 
double numerator=z; 
double denominator=1; 
z*=z; 
for(int i=0; i<n; i++){ 
result+=enumerator/denominator; 
numerator*=-z; 
denominator+=2;} 

return Math.toDegrees(ergebnis); 
} 

 
2) CORDIC Java implementation 

In comparison with the approximation using the 
Taylor series the CORDIC needs only simple shift and 
add operations as well as a LookUpTable operation. 
The description complexity is comparable with that of 
the Taylor implementation. 
 

public static double cordic_atan2(double y, 
double x, int n){ 

double newX; 
double z = 0; 
double half=1; 
int d=1; 
for(int i=0; i<=n; i++){ 
if(y>=0) d=-1; //direction of rotation 
else d=1; 
newX=x-d*half*y; 
y=y+d*half*x; 
x=newX; 
z=z-d*angles[i]; //precalculated angles 
half/=2;} 
return z;} 

} 

 
The simulation of both modeled algorithms produces the 

following results, which are exemplary summarized in a table. 
First the number of iterations was investigated, which leads to 
an accuracy of ≤ 0.001° concerning the reference angle. 

 

x y ref. angle CORDIC 
(iterations) 

Taylor 
(iterations) 

0.92 
0.72 

0.39 
0.69 

22.97272 
43.78112 

12 
14 

5 
64 

 
If the number of iterations is set to 16 for both algorithms, 

then the accuracy of the results varies very strongly. In 
particular the Taylor algorithm shows clear weaknesses 
regarding the accuracy, see table below. 

 

x y ref. angle CORDIC 
(error) 

Taylor 
(error) 

0.92 
0.72 

0.39 
0.69 

22.97272 
43.78112 

0.0134 
0.0115 

0.0000 
0.2286 

 
The CORDIC obtains a high accuracy of the computed 

result for a constant number of iterations in the entire 
coordinate system. Introducing the pseudo rotations and the 
represented simplifications the CORDIC is limited to only two 

shift, three add/sub operations and one LookUpTable 
operation. That way the system is also efficient implementable 
in hardware. 

In the sense of the model based design the CORDIC 
processor, see Fig. 2, is now modelled in a third variant with 
MLDesigner using logic elements/finite state machines 
(FSM). The specified CORDIC is validated in the context of 
the compass model by simulation. This validated specification 
is the basis for an implementation on a Cylone II EP2C35 
FPGA, or in other words, the validated MLDesigner model is 
input for the Quartus II Web edition, the FPGA development 
environment of the company Altera. 

 

V. IMPLEMENTATION 
For the implementation in hardware different design 

variants are possible. These designs differ regarding the 
execution time, hardware costs (number of logic cells) and the 
principle suitability for the implementation on a FPGA. 

1) Bit parallel iterative CORDIC processor 
Each of the three to be solved functions xn, yn and zn 
are directly implemented in hardware, see Fig. 5. The 
shown processor represents an iterative CORDIC 
structure. 
The function for the determination of the direction of 
rotation di determines itself in the rotation mode 
through sign(zi) and in the vector mode through 
sign(yi). At the beginning of the processing the initial 
values x0, y0 and z0 are loaded into the registers. This 
is done via the upstream multiplexers. In one iteration 
step the values are loaded from the registers into the 
adders/subtracters and the shift registers. The results 
of the computations are then loaded again into the 
individual registers via the multiplexers. The angles 
for the computation of zi are stored in successive 
addresses in a ROM. So one sufficient incremental 
access is enough. After processing of the last 
iterations the result of the respective variables can be 
read directly at the outputs (the adders/subtracters). In 
this design the arithmetic and the shift operations are 
implemented with data word length. This 
implementation does not lead to an efficient solution. 
The signals are passing a high number of FPGA cells. 
This leads to a slow design with a high number of 
logic cells. 

2) Bit serial iterative CORDIC processor 
A more compact method arises as a result of the use of 
bit serial arithmetic. A substantially higher clock than 
in the bit parallel variant is reached. This design 
consists of three bit serial adders/subtracters, three 
shift registers as well as one serial ROM. Thus it 
needs a minimum of hardware costs. The shift 
registers are in the length wise identical to the word 
length. For the initialization the data are loaded into 
the shift registers via the multiplexers. Each iteration 
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needs exactly w clock cycles (w is the word length). 
The whole word is loaded into the adders/subtracters 
and afterwards it is pushed again into the shift 
registers. At the beginning of every step the sign of 
the variables is read and passed on to the 
adders/subtracters. After the last iteration the words 
are pushed to the outputs, at the same time a new 
word can be initially loaded again already. The 
advantage of this design is in the simple and minimal 
hardware. This permits to work with a very high clock 
frequency, which is necessary for the high number of 
clock cycles. 

3) Bit parallel combinatorial CORDIC processor 
Beside the iterative design variants, where n iterations 
for the computation are needed, there are also other 
possibilities to implement the CORDIC. One of these 
possibilities, described in [13], is the so called 
unrolled CORDIC processor. The idea thereby is to 
implement the hardware for every individual iteration 
step. This design variant is shown in Fig. 6. 
This structure has some advantages. Because each 
iteration uses their own elements, always the same 
operations are executed. So the shift registers are not 
required and can be hard wired, because the same 

number of shift operations always achieved. The same 
is valid for the angles. They are a constant for each 
iteration step. That means, there is no need to use 
memory and the values are likewise hard wired. So 
there is no need of registers at all. The structure 
reduces the number of adders/subtracters. But that 
purely combinatorial structure has also its 
disadvantages. The processing time is accordingly 
high due to the multiplicity of the elements. However 
this structure is faster than those of the iterative 
variants, because the time for initialization and setup 
and hold of the registers is completely omitted. 

4) Pipeline structure 
The preceding structure is simply implementable as 
pipeline structure. Between the add and sub blocks 
pipeline registers are connected. So for a pipeline 
architecture only a few additional hardware costs are 
needed. The advantage is that with a filled pipeline 
after each clock a result can be read on the outputs. 

Particularly the variants of bit serial iterative CORDIC 
processor and the pipeline structure were examined. Both 
MLDesigner models are transformed into the Quartus II 
model. The chip analyses show the following results: 

 
 Bit serial iterative Pipeline 

structure 
Logic elements all 
Logic elements CORDIC 

1469 
887 

2526 
1934 

number register all 
number register CORDIC 

640 
121 

1477 
958 

 
In the compass implementation for the computation of the 

arc tangent the pipline structure was used. The clock diagram, 
see Fig. 7, shows for every clock the data at the input of a 
pipeline step. The steps 1, 2 and 5. are represented. 

On the basis of the CORDIC pipeline structure the 
complete compass was implemented on a FPGA. The top level 
compass des ign is shown in Fig. 8. 

The system is simulated/validated in the tool chain: 
MLDesigner, Quartus II Web edition and tested as a real 
system. As a test scenario a rotated house of the St. Nicholas 
is used, see Fig. 9. A real scenario could be a navigational task 
in a robot system [3]. 

When pacing down the house of the St. Nick the compass 
continuously supplies the expected azimuth angles per clock, 
see Fig. 10. The implementation runs with 50 MHz and the 
individual blocks from figure 8 have the following number of 

 
Fig. 5.  Bit parallel iterative CORDIC processor. 
  

 
Fig. 6.  Bit parallel combinatorial CORDIC processor. 
  

Fig. 7.  Waveform. 
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clock cycles: 
• convert_start   3 clocks 
• cordic_pipeline  16 clocks 
• convert_end   2 clocks 
• convert_bcd   6 clocks 

 

VI. CONCLUSION 
An electronic compass has been developed consequently 

model based. First an abstract system model was built using 
MLDesigner. So already in the early design phases 
performance analyses for system could be accomplished. In 

the special focus stands thereby the CORDIC algorithm. The 
model was stepwise refined and implemented by Quartus II on 
a FPGA. It was shown that the model based design using a 
tool chain allows extensive analyses and generates a fast, clear 
implementation.  
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Fig. 8.  Top-Level compass design. 
  

 
Fig. 9.  House of St. Nicholas. 
  

Fig. 10.  Angle output for the house of St. Nick. 
  




