
ELECTRONICS, VOL. 15, NO. 1, JUNE 2011

62

Abstract—In this paper we presented architecture and

implementation details of an object–to–relational-database

mapping specification tool (NHibernateMapper) based on

NHibernate ORM framework. The tool is able to automatically

traverse provided database schema and domain class library to be

matched and to suggest correspondences. Interactive GUI

provides ability to accept or reject suggested correspondences as

well as to manually define mappings in order to prune it into a

final form. By analyzing database schema of spatially enabled

DBMSs, this tool supports the development of Data Access Layer

for GIS solutions. If provided with a domain class library

generated on the basis of application ontology used by GIS

solution, NHibernateMapper becomes a tool that enables rapid

development of Data Access Layer for Interoperable GIS

solutions.

Index Terms—Schema mapping, Object relational mapping.

I. INTRODUCTION

OST of the modern information systems use databases for

storage of persistent information, mostly because of their

reliability and standardized query language. On the other hand,

object-oriented programming languages such as Java, C# and

C++ are most commonly applied for the system programming.

Conventional software development approaches for database

access within object-oriented languages raises a problem

known as “object-relational impedance mismatch”. It occurs

because the object-oriented and relational database paradigms

are based on different principles [3] and manifests itself in

several specific differences: inheritance implementation,

association’s implementation, data types, etc.

Object Relational Mapping (ORM) tools have been

developed in an attempt to overcome mentioned problem. As

described in the Agile methodology for software and databases

development [3], ORM tools automatically create Data Access

Layer based on database model. The most successful

representatives of ORM tools are Hibernate [11], Oracle

TopLink [12] and recently introduced Microsoft Entity

Framework (EF) [1,2]. With these tools, application developer

is encouraged to think in terms of data layer objects and their

relationships. The ORM takes all the control of handling

S. S. Cvetković, M. D. Bogdanović and L. V. Stoimenov are with the

University of Niš, Faculty of Electronic Engineering, Niš, Serbia (e-mail:

{stevica.cvetkovic, milos.bogdanovic, leonid.stoimenov}@elfak.ni.ac.rs).

objects and relationships at runtime. It automatically tracks

updates made to the objects and performs the necessary SQL

insert, update, and delete statements at commit time.

Hibernate is widely used, comprehensive and stable open

source ORM framework. Furthermore, it is available for both

Java and .NET environments (NHibernate). Although there are

Hibernate tools for automatic generation of object model and

mapping files, based on existing database, there are only few

commercial tools which are capable to map already created

object model to existing database. This is of crucial

importance when trying to map standardized domain

knowledge (application programming classes) to legacy

database systems. For this purpose NHibernateMapper tool is

developed, which is able to generate NHibernate mapping file

(.hbm file) based on the already available domain knowledge

and existing database. These three components (application

programming classes, database and mapping file) are sufficient

premises for generation of complete Data Access Layer using

NHibernate ORM mechanism [8].

The aim of this paper is to present a tool that can be used for

rapid development of data access layer for interoperable GIS

solutions. Its primary purpose is to generate objects–to–

database mapping specifications according to NHibernate

ORM framework. It is used to assist in semi-automatically

determining correspondences between GIS solution domain

class model and the underlying database. In particular,

correspondences are determined between domain class

member attributes and database columns. The tool contains the

visual front-end which suggests mapping using “Levenshtein

distance” and “Data type correspondence” heuristics. In order

to define final mapping definitions, these suggestions must be

pruned by user interaction. Defined mapping definitions are

then used to generate XML-based mapping file.

The paper is organized as follows: Section 2 describes the

purpose of created tool and gives brief overview of previous

research in schema mapping tools. Section 3 presents overall

software architecture and user interface of the tool. Detailed

description of implementation including technology specific

details is given in Section 4. We concluded and discussed

about future work in Section 5.

NHibernateMapper - A Tool for Rapid

Development of Data Access Layer for

Interoperable GIS Solutions

Stevica S. Cvetković, Miloš D. Bogdanović and Leonid V. Stoimenov

M

ELECTRONICS, VOL. 15, NO. 1, JUNE 2011

63

II. MOTIVATION AND RELATED WORK

Our motivation in this work was to apply

NHibernateMapper for development of Interoperable

Geographic Information System (GIS) [4]. Specifically, its

purpose is for support of rapid generation of Data Access

Layer using existing ORM solutions. In order to achieve

interoperability of developed GIS, domain ontologies could be

used as a baseline model in the GIS construction process.

Ontologies give us an opportunity to define a meaning of the

information and are mainly used during communication of

different GIS in order to solve the meaning of the available

data. However, ontologies could be also treated as a starting

model for the GIS development [13]. By representing ontology

in the form of object-oriented classes, ontology concepts can

be observed as domain objects that should be mapped to

existing relational database. In order to provide object-to-

database mapping, we developed NHibernateMapper tool. It

is intended for mapping of object-oriented GIS ontology

classes into existing databases.

Mapping data between different representations is a

common problem which has been addressed from either an

algorithmic or a visualization point of view. Much work has

been done in this field, differing mainly in the degree of

automation achieved. In [5] is given an overview of a variety

of approaches to schema mapping and automatic mappings

generation. Attempt to automatically determine a mapping

between two DTDs is described in [6]. In [7] and [10] are

presented approaches for specifying data mapping between

two XML schemas using a combination of automated schema

analysis agents and selective user interaction. There are also

commercial tools like Altova MapForce [8] and Microsoft

BizTalk Mapper [9] which could be applied for different

schema mapping scenarios including Xml-to-Xml, Database–

to-Xml and Database-to-Database mapping. However, they

proved to be too generic and complex for learning of specific

domain application.

III. NHIBERNATEMAPPER ARCHITECTURE

Starting point in the process of NHibernateMapper mapping

file generation is existing relational database as well as

specific domain knowledge in the form of application

programming classes. This can be observed in Fig. 1 which

represents the NHibernateMapper overall architecture. In

order to generate mapping file, the tool utilizes publicly

available schema definition of NHibernate mapping file

(nhibernate-mapping.xsd). This file is the third input element

When using NHibernateMapper tool, the user is required to

select an existing database as well as domain object-oriented

classes in form of Dynamic Linked Library (DLL).

NHibernateMapper will automatically extract database schema

of previously selected database and class member attributes of

selected DLL.

Fig. 1. NHibernateMapper Architecture.

User has to manually select the specific data table and an

object-oriented class to be mapped. Then, the database schema

and class attributes are automatically analyzed and suggestions

of candidate mappings are generated and displayed to the user.

Candidate mappings are generated for each column (column-

to-attribute mapping), based on string matching algorithm as

well as data type comparison. The user is able to accept or

reject suggested correspondences. Also, the users can take

advantage of the interactive GUI in which suggestions could

be pruned into a final mapping. Beside accepting or rejecting

proposed mapping, there is also possibility to redefine

mappings manually. When the user is finally satisfied with

mapping definition, it can be saved to a NHibernate XML

mapping file. Illustration of NHibernateMapper GUI is given

in Fig. 2.

Fig. 2. NHibernateMapper GUI.

ELECTRONICS, VOL. 15, NO. 1, JUNE 2011

64

IV. IMPLEMENTATION DETAILS

NHibernateMapper has been implemented entirely in C#

using Microsoft .NET Framework 4.0. As a result,

NHibernateMapper.dll class library is created. All

programming classes in the library could be divided into two

major groups: classes for database schema retrieving (Fig. 3.)

and classes for mapping file manipulation (Fig. 5).

Class DbInfo is a central class of the database schema

retrieving part (Fig. 3). It represents object model of database

schema. DbInfo class obtains and connects schema information

including: tables (DbTableInfo), columns (DbColumnInfo) and

constraints (DbConstraintInfo).

Fig. 3. Diagram of classes for database schema retrieval.

Current implementation supports following DBMS-s: MS

SQL Server, MySQL and PostgreSQL. However, configurable

design offers possibility to introduce support for any other

DBMS which has data provider for .NET Framework.

Introduction of support for new DBMS could be done in three

successive steps:

• Define three additional queries that retrieve database

schema information. These queries (GetTables, GetColumns

and GetConstraints) are part of a class DbInfoQueries.

• Copy data provider (in form of DLL) offered by DBMS

producer. We have already used MySql.Data.dll for MySQL

and Npgsql.dll for PostgreSQL.

• Change configuration file so it includes added data

provider declaration.

Example of existing configuration file is given in Fig. 4.

<system.data>

...

 <DbProviderFactories>

 <add name="PostgreSQL Data Provider"

 invariant="Npgsql"

 description=".Net Framework Data Provider for

PostgreSQL"

 type="Npgsql.NpgsqlFactory, Npgsql, Version=2.0.6.0,

 Culture=neutral,

PublicKeyToken=5d8b90d52f46fda7">

 </add>

 <add name="MySQL Data Provider"

 invariant="MySql.Data.MySqlClient"

 description=".Net Framework Data Provider for MySQL"

type= "MySql.Data.MySqlClient.MySqlClientFactory,

MySql.Data, Version=6.1.3.0, Culture=neutral,

PublicKeyToken=c5687fc88969c44d">

 </add>

 ...

 </DbProviderFactories>

...

</system.data>

Fig. 4. Example of database configuration file.

Fig. 5. Diagram of classes used for mapping files manipulation.

Classes for mapping file manipulation are responsible for

populating of object model of XML mapping file as well as its

storing into file system (Fig. 5). Class XmlMapElementInfo

ELECTRONICS, VOL. 15, NO. 1, JUNE 2011

65

manages mapping of one database column with a

corresponding class attribute. Central class of this part is

XmlMapFileGenerator which connects all mapped elements

into a whole and enables saving into XML mapping file. It also

implements string matching algorithms including “Levenshtein

distance” and “Data type correspondence”. Architecture is

flexible enough to allow incorporation of new heuristic

algorithms.

On a programming level, mapping file is represented by its

object model generated from schema definition file. From the

developer’s point of view, using schema definition enables

validation of mapping file as well as its storing into XML file.

Complete process of mapping file generation using previously

described programming classes could be summarized in code

snippet in Fig. 6.

public string GenerateXmlMappingFile()

{

 // Database connection and db schema extraction

DbInfo dbInfo =DbInfoFactory.GetDbInfo(

DbProviderInvariantNames.Npgsql, connString);

//Extract table structure information

List<DbTableInfo> tableInfoList = dbInfo.DbTableInfoList;

// Mapping file initialization

XmlMapFileGenerator xmlFileGen = new

XmlMapFileGenerator();

// Itearation through tables and columns

foreach (DbTableInfo tableInfo in tableInfoList){

foreach (DbColumnInfo colInfo in tableInfo.Columns){

 //Generation of a mapping file element

 PropertyInfo propInfo =

typeof(TestMappingClass).GetProperty("Gid");

 XmlMapElementInfo xmlMapEl = new XmlMapElementInfo(

colInfo, propInfo);

 //Insert element into mapping file

 xmlFileGen.AddToMapping(xmlMapEl);

}

}

// Return mapping file as string

 return xmlFileGen.GetMappingFileString();

}

Fig. 6. Code snippet for mapping file generation process.

As already mentioned, the purpose of developed tool is its

application in the field of Interoperable GIS solutions.

Therefore we have tested NHibernateMapper with an existing

GIS database implemented in PostgreSQL. Example of

generated mapping file is presented in Fig. 7.

<xml version="1.0"?>

<hibernate-mapping

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="urn:nhibernate-mapping-2.2">

...

 <class name="Gis.Data.Ulice, Gis.Data" table="ulice">

 <id name="Gid" column="gid" type="System.Int32" />

 <property name="UliceName" type="System.String"

column="name" />

 <property name="TheGeom"

type="GeoAPI.Geometries.IGeometry" column="the_geom" />

 <property name="Tip" type="System.String" column="tip" />

 </class>

 <class name="Gis.Data.ObrazovneUstanove, Gis.Data"

table="obrazovne_ustanove">

 <id name="IdObrazovne" column="id_obrazovne"

type="System.String" />

 <property name="Adresa" type="System.String"

column="adresa" />

 <property name="Povrsina" type="System.Double"

column="povrsina" />

 <property name="TheGeom"

type="GeoAPI.Geometries.IGeometry" column="the_geom" />

 </class>

...

</hibernate-mapping>

Fig. 7. Example of generated NHibernate mapping file of test GIS database.

V. CONCLUSION

NHibernateMapper belongs to the group of schema

mapping tools. It is specifically designed for semi-automatic

object-to-database mapping specification based on NHibernate

ORM. Developed tool allows mapping of information

retrieved from existing database with domain model classes.

As a starting point for the domain classes definition,

ontologies could be applied. Ontologies offer uniform

mechanism to define a meaning of the information and

represent convenient way for domain model definitions. By

representing ontology in the form of object-oriented classes,

ontology concepts can be observed as domain objects that will

be mapped to existing relational database. NHibernateMapper

is primarily developed for application in the field of

Geographic Information Systems. This tool could be coupled

with an already existing tool that transforms ontology concepts

into object-oriented classes [4]. In this way,

NHibernateMapper should support generation of Data Access

Layer using existing ORM tools. By its semi-automatic

mapping generation and coupled with a tool described in [4],

NHibernateMapper can significantly contribute to rapid

development of Data Access Layer for Interoperable GIS

solutions.

Advantage of NHibernateMapper is its configurable design

that allows support for intuitive introduction of new DBMS.

Currently NHibernateMapper supports only Hibernate

mapping file specification. Improvement plan assumes

extension to other popular ORM mapping file definitions, like

Microsoft Entity Framework. There is also plan for integration

of the tool into complete solution for WebGIS application

source code generator [14].

ELECTRONICS, VOL. 15, NO. 1, JUNE 2011

66

REFERENCES

[1] A. Adya, J. Blakeley, S. Melnik and S. Muralidhar, “Anatomy of the

ADO.NET Entity Framework”. In Chan, C. Y. Ooi B. C. & Zhou, A.

(eds), Proceedings of the ACM SIGMOD International Conference on

Management of Data, June 11-14, Beijing, China, 2007, pp. 877-888.

[2] P. Castro, S. Melnik and A. Adya, “ADO.NET entity framework: raising

the level of abstraction in data programming,” In Chan, C. Y. Ooi B.

C. & Zhou, A. (eds), Proceedings of the ACM SIGMOD International

Conference on Management of Data, Beijing, China, 2007, pp. 1070-

1072.

[3] S. Ambler, Agile Database Techniques, Wiley, 2003.

[4] A. Stanimirović, M. Bogdanović and Stoimenov, “Data Access Layer

Generation for Interoperable GIS Environments,” 12th AGILE

International Conference on Geographic Information Science, 02-05

June, Hannover, Germany, ISSN 2073-8013, 2009

[5] E. Rahm, P. A. Bernstein, A survey of approaches to automatic schema

mapping, The VLDB Journal, Springer Verlag, 10: 334-350, 2001

[6] H. Su, H. Kuno and E. A. Rudensteinern, “Automating the

Transformation of XML Documents,” Proc Workshop on Web

Information and Data Management, 2001.

[7] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin, “Data-driven

understanding and refinement of schema mappings.” In SIGMOD

Conference, 2001.

[8] Altova Mapforce, http://www.altova.com/products_mapforce.html

[9] M. A. Goulde, Microsoft's BizTalk Framework adds messaging to XML,

E-Business Strategies & Solutions, 1999, pp.10-14.

[10] S. Bossung, H. Stoeckle, J. Grundy, R. Amor and J. Hosking,

“Automated Data Mapping Specification via Schema Heuristics and

User Interaction,” 19th International Conference on Automatic

Software Engineering (ASE’04), 2004, pp. 208—217.

[11] C. Bauer, G. King, Java Persistence with Hibernate, Manning

Publications, 2006.

[12] OracleTopLink, http://www.oracle.com/technology/products/ias/toplink

[13] F. T. Fonseca, M. J. Egenhofer, “Ontology-Driven Geographic

Information System,” 7th ACM Symposium on Advances in Geographic

Information System, Kansas City, 1999.

[14] M. Bogdanović, A. Stanimirović and L. Stoimenov, “Ginis MvcGen – a

Prototype of WebGIS Application Source Code Generator,” ICEST

2010, Ohrid, Makedonija, 2010, pp. 307 – 310.

